[1]孙长青),袁媛),王蒙),等.基于logistic回归模型的乳腺浸润性导管癌腋窝淋巴结转移情况的预测*[J].郑州大学学报(医学版),2013,(06):814.
 SUN Changqing),YUAN Yuan),WANG Meng),et al.Status of axillary lymph node metastasis predicting in breast infiltrative ductal carcinoma by using logistic regression model[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2013,(06):814.
点击复制

基于logistic回归模型的乳腺浸润性导管癌腋窝淋巴结转移情况的预测*
分享到:

《郑州大学学报(医学版)》[ISSN:1671-6825/CN:41-1340/R]

卷:
期数:
2013年06期
页码:
814
栏目:
应用研究
出版日期:
2013-11-20

文章信息/Info

Title:
Status of axillary lymph node metastasis predicting in breast infiltrative ductal carcinoma by using logistic regression model
作者:
孙长青1)袁媛2)王蒙3)李真4)刘秀玮3)李君5)孟新3)贾晓灿1)张卫东3)#
1)郑州大学公共卫生学院社会医学与卫生事业管理教研室 郑州 450001;2)郑州市卫生学校 郑州 450052;3)郑州大学公共卫生学院流行病学教研室 郑州 450001;4)河南省人民医院病理科 郑州 450003;5)河南省疾病预防控制中心免疫规划与预防科 郑州450016
Author(s):
SUN Changqing1) YUAN Yuan2) WANG Meng3) LI Zhen4) LIU Xiuwei3) LI Jun5) MENG Xin3) JIA Xiaocan1) ZHANG Weidong3)
1)Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, Zhengzhou 450001; 2)Health School of Zhengzhou City, Zhengzhou 450052; 3)Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001; 4)Department of Pathology, Henan Provincial People's Hospital, Zhengzhou 450003; 5)Department of Immunization Programs and Prevention, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016
关键词:
logistic模型 预测 乳腺浸润性导管癌 淋巴结转移
Keywords:
logistic model prediction breast infiltrative ductal carcinoma lymph node metastasis
分类号:
R737.9
摘要:
目的:研究拓扑异构酶Ⅱ(TopoisomeraseⅡ)、nm23、雌激素受体(ER)、孕激素受体(PR)和表皮生长因子受体(C-erbB-2)在乳腺浸润性导管癌组织中的表达与腋窝淋巴结转移的关系,建立以相关因素预测乳癌腋窝淋巴结转移的多因素logistic回归模型。方法:采用免疫组化法检测105例乳腺浸润性导管癌组织中TopoisomeraseⅡ、nm23、ER、PR和C-erbB-2表达情况,通过多因素logistic回归分析对乳癌危险因素进行筛选,建立乳癌淋巴结转移模型并检验。结果:C-erbB-2[P<0.001,OR(95%CI)=11.559(3.750~35.630)]、TopoisomeraseⅡ[P=0.026,OR(95%CI)=5.196(1.223~22.074)]阳性表达是乳腺浸润性导管癌腋窝淋巴结转移的危险因素,nm23[P=0.011,OR(95%CI)=0.123(0.025~0.613)]阳性表达是保护因素。据相关因素建立logistic回归模型,对该模型转移情况进行判别分类,转移者的判对率为97.1%(66/68),样本回代考核,模型 ROC曲线下面积为0.837,灵敏度为0.971,特异度为0.297。 结论:多因素logistic回归模型在理论上可以较准确地预测乳腺浸润性导管癌腋窝淋巴结转移情况。
Abstract:
Aim: To explore the expressions of TopoisomeraseⅡ, nm23, ER, PR and C-erbB-2 in the breast infiltrative ductal carcinoma tissue, and establish logistic regression model for predicting axillary lymph node metastasis. Methods:The expressions of TopoisomeraseⅡ, nm23, ER, PR and C-erbB-2 in 105 cases of breast infiltrative ductal carcinoma were detected by immunohistochemistry. Risk factors related to the status of metastasis in breast infiltrative ductal carcinoma were screened using logistic regression.The model for predicting lymph node metastasis in breast infiltrative ductal carcinoma was established and its effects were observed. Results: TopoisomeraseⅡ [P=0.026,OR(95%CI)=5.196(1.223-22.074)],C-erbB-2[P<0.001,OR(95%CI)=11.559(3.750-35.630)]were risk factors for breast infiltrative ductal carcinoma axillary lymph node metastasis, while nm23[P=0.011,OR(95%CI)=0.123(0.025-0.613)]was protective factor. Depending on these factors, the prediction model was established and the correct percentage was 97.1%(66/68). The area under the ROC curve of logistic regression model was 0.837, and the sensitivity and specificity were 0.971 and 0.297. Conclusion: The multivariate logistic regression model could be helpful for predicting axillary lymph node metastasis in breast infiltrative ductal carcinoma.

参考文献/References:

[1] Chen LY, Chen HF. Research progress on basal-like breast cancer[J]. Ai Zheng, 2008, 27(5):555
[2] 高纪东,王靖,冯晓丽,等. 5758例女性乳腺癌激素受体状态及其相关因素分析[J]. 中华肿瘤杂志,2009,31(9):683
[3] 申培红,陈奎生,李珊珊,等. 乳癌组织中nm23、MMP-2、TIMP-2 蛋白的表达[J]. 郑州大学学报:医学版,2007,42(2):356
[4] Yenidunya S, Bayrak R, Haltas H. Predictive value of pathological and immunohistochemical parameters for axillary lymph node metastasis in breast carcinoma[J]. Diagn Pathol, 2011, 6:18
[5] Chua B, Ung O, Taylor R, et al. Frequency and predictors of axillary lymph node metastases in invasive breast cancer[J]. ANZ J Surg, 2001, 71(12):723
[6] Barnes DM, Dublin EA, Fisher CJ, et al. Immunohistochemical detection of p53 protein in mammary carcinoma: an important new independent indicator of prognosis?[J]. Hum Pathol, 1993, 24(5):469
[7] Bryant RJ, Banks PM, O Malley DP. Ki67 staining pattern as a diagnostic tool in the evaluation of lymphoproliferative disorders[J]. Histopathology, 2006, 48(5):505
[8] 陈立章,孔繁娟,陈亮. 乳腺癌ER、PR、CerbB-2表达与临床病理的关系[J]. 中国现代医学杂志,2011,21(8):998
[9] 郑文博,潘凌霄,唐炜,等.乳腺癌干细胞的培养及鉴定[J].南方医科大学学报,2011,31(12):2021
[10]吴跃龙,李静,潘刚. 乳腺癌c-erbB-2、E-cad蛋白表达的意义及其相关性的探讨[J]. 肿瘤防治研究,2002,29(6):460
[11]Andersson Y, Frisell J,Sylvan M,et al. Breast cancer survival in relation to the metastatic tumor burden in axillary lymph nodes[J]. J Clin Oncol, 2010, 28(17):2868
[12]Kalogeraki A, Ieromonachou P, Kafousi M, et al. Topoisomerase Ⅱ alpha expression in breast ductal invasive carcinomas and correlation with clinicopathological variables[J]. In Vivo, 2005, 19(5):837
[13]Mao H, Liu H, Fu X, et al. Loss of nm23 expression predicts distal metastases and poorer survival for breast cancer[J]. Int J Oncol, 2001, 18(3):587
[14]Jia Z, Zhao W,Fan L,et al. The expression of PCNA, c-erbB-2, p53, ER and PR as well as atypical hyperplasia in tissues nearby the breast cancer[J]. J Mol Histol, 2012, 43(1):115

相似文献/References:

[1]许春杰),尹素凤),郭春月),等.基于ARIMA-ERNN组合模型预测我国甲肝发病率*[J].郑州大学学报(医学版),2016,(06):726.
 XU Chunjie),YIN Sufeng),GUO Chunyue),et al.Forecasting incidence of hepatitis A based on ARIMA-ERNN combination model in China[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2016,(06):726.
[2]严 婧),杜玉开),杨北方)#.自回归求和移动平均模型在湖北省戊型病毒性肝炎发病率预测中的应用[J].郑州大学学报(医学版),2017,(03):290.[doi:10.13705/j.issn.1671-6825.2017.03.012]
 YAN Jing),DU Yukai),YANG Beifang).Application of auto regressive integrated moving average model in forecasting incidence of hepatitis E in Hubei Province[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2017,(06):290.[doi:10.13705/j.issn.1671-6825.2017.03.012]
[3]王 斌),冯慧芬),黄 平),等.随机森林模型在重症手足口病预测中的应用价值[J].郑州大学学报(医学版),2018,(06):747.[doi:10.13705/j.issn.1671-6825.2018.03.135]
 WANG Bin),FENG Huifen),HUANG Ping),et al.Application value of random forest model in prediction of severe hand-foot-mouth disease[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2018,(06):747.[doi:10.13705/j.issn.1671-6825.2018.03.135]
[4]黄 璐,孙 娜,许小珊,等.广义回归神经网络在布鲁氏菌病预测中的应用[J].郑州大学学报(医学版),2018,(06):751.[doi:10.13705/j.issn.1671-6825.2018.01.119]
 HUANG Lu,SUN Na,XU Xiaoshan,et al.Application of generalized regression neural network in brucellosis prediction[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2018,(06):751.[doi:10.13705/j.issn.1671-6825.2018.01.119]

备注/Memo

备注/Memo:
*河南省软科学基金资助项目 122400450034
#通讯作者,男,1963年10月生,博士,教授,研究方向:临床流行病学、分子流行病学,E-mail:imooni@zzu.edu.cn
更新日期/Last Update: 2013-11-20