[1]刘治华)△,徐新伟),管文浩),等.腰椎有限元模型的建立与不同角度牵引条件下的仿真研究*[J].郑州大学学报(医学版),2014,(01):119.
 LIU Zhihua#,XU Xinwei#,GUAN Wenhao#,et al.Establishment of a finite element model of lumbar spine and simulation under different traction angles[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2014,(01):119.
点击复制

腰椎有限元模型的建立与不同角度牵引条件下的仿真研究*
分享到:

《郑州大学学报(医学版)》[ISSN:1671-6825/CN:41-1340/R]

卷:
期数:
2014年01期
页码:
119
栏目:
应用研究
出版日期:
2014-01-20

文章信息/Info

Title:
Establishment of a finite element model of lumbar spine and simulation under different traction angles
作者:
刘治华1)徐新伟1)管文浩2)黄玉锋1)王晓东3)苏建勇3)
1)郑州大学机械工程学院 郑州 4500012)武汉船用机械有限责任公司 武汉 4300843)河南勃达微波设备有限公司 郑州 450001
Author(s):
LIU Zhihua1)#XU Xinwei1)#GUAN Wenhao2)#HUANG Yufeng1)#WANG Xiaodong3)#SU Jianyong3)#
1)School of Mechanical Engineering, Zhengzhou University, Zhengzhou 4500012)Wuhan Limited Liability Company of Marine Machinery, Wuhan 4300843)Henan Boda Microwave Equipment Company,Zhengzhou 450001
关键词:
腰椎有限元模型牵引椎间距仿真
Keywords:
lumbar spinefinite element modeltractionintervertebral distancesimulation
分类号:
R318
摘要:
目的:探讨不同角度牵引对腰椎间盘的影响。方法:基于医用CT图像建立人体腰椎L1~5、S1节段的三维有限元模型,模型共有148 943个节点,91 636个单元。对模型施加320 N的牵引力,模拟人体平躺时斜向上0°、5°、10°、15°、20°和25°牵引。结果:与其他几个牵引角度相比,当斜向上10°牵引时,椎间盘L4/5伸长量最大,为2.42 mm;斜向上15°牵引时,椎间盘L3/4伸长量最大,为2.44 mm;斜向上20°牵引时,椎间盘L2/3伸长量最大,为2.43 mm;斜向上25°牵引时,椎间盘L1/2伸长量最大,为2.46 mm。结论:通过调整牵引角度可以对病变的腰椎间盘进行有针对性的治疗。
Abstract:
Aim: To explore the effect of traction in different angles on lumbar discs traction in different angles. Methods: A threedimensional finite element model of human lumbar segments L1~5,and S1 was established based on medical CT images, and there were 148 943 nodes and 91 636 units in the model. Forces of two groups which size were respectively 320 and 200 N were exerted on the model based on clinical experience to simulate the traction under different traction angles such as 0°,5°,10°,15°,20° and 25° when the human body was lying down. Results: When the traction angle was 10°,the change of L4/5 was the largest,which was 2.42 mm; when the traction angle was 15°,the change of L3/4 was the largest,which was 2.44 mm; when the traction angle was 20°,the change of L2/3 was the largest,which was 2.43 mm; When the traction angle was 25°,the change of L1/2 was the largest,which was 2.46 mm. Conclusion: The specific lesion of intervertebral discs can be better treated by adjusting the traction angle.

参考文献/References:

[1]钟敏莹,吴思平.齐刺配合腰椎牵引治疗腰椎间盘突出症的疗效观察 [J].广州中医药大学学报,2013,10(3):37 [2]毕胜,张明.腰椎三维有限元模型的建立及应用[J].颈腰痛杂志,2001,22(4):339 [3]ShiraziAdl A, Ahmed AM, Shrivastava SC. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments[J]. J Biomech,1986,19(4): 331 [4]Tsuang YH, Chiang YF, Hung CY, et al. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentationa finite element study[J]. Med Eng Phys,2009,31(5): 565 [5]闫家智, 吴志宏, 汪学松,等. 腰椎三维有限元模型建立和应力分析[J].中华医学杂志, 2009,89(17):1162 [6]Chen SH, Zhong ZC, Chen CS, et al. Biomechanical comparison between lumbar disc arthroplasty and fusion[J]. Med Eng Phys,2009,31(2):244 [7]Argoubi M,ShiraziAdl A. Poroelastic creep response analysis of a lumbar motion segment in compression[J].J Biomech,1996,29(10):1331 [8]Chosa E, Goto K, Totoribe K, et al. Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebral disk in the presence of disk degeneration, using the threedimensional finite element method[J].Spinal Disord Tech,2004,17(2):134 [9]Shin DS, Lee K,Kim D. Biomechanical study of lumbar spine with dynamic stabilization device using finite element method[J]. ComputerAided Design,2007,39(7): 559 [10]苏晋,赵文志,陈秉智,等.建立全腰椎有限元接触模型[J]. 医用生物力学,2010,25(3):200 [11]秦计生,王昱,彭雄奇,等.全腰椎三维有限元模型的建立及其有效性验证[J].医用生物力学,2013,28(2):47 [12]Brown T,Hansen RJ,Yorra AJ.Some mechanical tests on the lumbosacral spine with particular reference to intervertebral[J]. J Bone Joint Surg Am,1957,39A(5): 1135 [13]Markolf KL. Deformation of the thoracolumbar intervertebral joints in response to external load:a biomechanical study using autopsy material[J].J Bone Joint Surg Am,1972,54(3):511 [14]Markolf KL,Morris JM.The structural components of the intervertebral disc.A study of their contributions to the ability of the disc to withstand compressive forces[J].J Bone Joint Surg Am,1974,56(4):675 [15]Virgin WJ. Experimental investigations into the physical properties of the intervertebral disc[J].J Bone Joint Surg Br, 1951,33B(4):607 [16]Tekeglu I, Adak B, Bozkurt M, et al. Lumbar vertebrae and gravitational traction[J].Spine(Phila Pa 1976),1998,23(9):1061 [17]付帅,黄菊英.腰椎有限元分析及其临床意义[J].医疗卫生装备,2012,33(10):76 [18]林俊山,李兆文,林石明,等.不同角度和牵引力对腰椎间盘作用的实验研究[J].福建中医学院学报,2002,12(1): 21

相似文献/References:

[1]唐恒涛△,肖鹏,吴学建.前路椎间融合术治疗腰椎退变性疾病[J].郑州大学学报(医学版),2014,(06):891.
[2]刘治华,许伟超#,徐新伟,等.腰椎牵引角度有限元分析及优化[J].郑州大学学报(医学版),2015,(04):507.
 LIU Zhihua,XU Weichao,XU Xinwei,et al.Finite element analysis and optimization of traction angles of human lumbar spine[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2015,(01):507.

备注/Memo

备注/Memo:
*河南省产学研合作项目132107000017;△男,1971年7月生,博士,副教授,研究方向:生物力学,Email:liuzhihua@zzu.edu.cn
更新日期/Last Update: 2014-02-20