[1]何霞霞),张红升),李 迪),等.基于CT影像评分的人工神经网络模型对肺部良恶性病变的判别价值[J].郑州大学学报(医学版),2018,(06):723-726.[doi:10.13705/j.issn.1671-6825.2018.05.003]
 HE Xiaxia),ZHANG Hongsheng),LI Di),et al.Value of artificial neural network model based on pulmonary CT images scores in the diagnosis of lung benign and malignant lesions[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2018,(06):723-726.[doi:10.13705/j.issn.1671-6825.2018.05.003]
点击复制

基于CT影像评分的人工神经网络模型对肺部良恶性病变的判别价值()
分享到:

《郑州大学学报(医学版)》[ISSN:1671-6825/CN:41-1340/R]

卷:
期数:
2018年06期
页码:
723-726
栏目:
论著
出版日期:
2018-11-20

文章信息/Info

Title:
Value of artificial neural network model based on pulmonary CT images scores in the diagnosis of lung benign and malignant lesions
作者:
何霞霞1)张红升1)李 迪1)王 静2)吴逸明1)吴拥军1)
1)郑州大学公共卫生学院毒理学教研室 郑州 450001;2)郑州大学第一附属医院呼吸内科 郑州 450052
Author(s):
HE Xiaxia1)ZHANG Hongsheng1)LI Di1)WANG Jing2)WU Yiming1)WU Yongjun1)
1)Department of Toxicology,College of Public Health,Zhengzhou University, Zhengzhou 450001;2)Department of Respiratory Medicine,the First Affiliated Hospital,Zhengzhou University, Zhengzhou 450052
关键词:
肺癌 人工神经网络 肺CT评分
Keywords:
lung cancer artificial neural network pulmonary CT score
分类号:
R445.3
DOI:
10.13705/j.issn.1671-6825.2018.05.003
摘要:
目的:应用人工神经网络技术建立基于肺CT影像评分的肺癌辅助诊断模型,探讨其在肺部CT影像良恶性判别中的价值。方法:收集117例肺部病变患者的CT片,由3名有经验的放射科医师提取21项CT影像学特征并量化评分。从总样本中随机抽取73例样本为训练集,余44例为预测集。基于21项CT影像学特征和5项临床参数,应用人工神经网络技术构建肺癌的辅助诊断模型,并与logistic回归模型进行比较。结果:人工神经网络模型对44例样本预测的准确度为90.9%,logistic回归模型为68.2%。结论:与logistic回归模型相比,人工神经网络模型用于判断肺部良恶性病变的准确率高,对于提高肺癌诊断的准确性具有潜在的应用价值。
Abstract:
Aim:To establish an assistant diagnosis model for lung cancer by the artificial neural network(ANN)model on the basis of the scores of lung CT images.Methods:CT images of 117 patients with lung lesions were collected.Twenty-one features of CT images were extracted and then the scores were quantified by 3 experienced radiologists; 73 samples were randomly selected as the training set, and the remaining 44,as the prediction set; finally,an auxiliary diagnostic model for lung cancer was constructed by ANN technology using 21 features of CT images and 5 clinical parameters and its diagnostic value was compared with logistic regression model.Results:The accuracy of ANN model for the prediction set was 90.9%,while that of the logistic regression model was 68.2%.Conclusion:Compared with logistic regression model, the ANN model had higher accuracy in discrimination of lung cancer from lung benign lesions by CT images. It has potential application value in improving the accuracy of lung cancer diagnosis.

参考文献/References:

[1] FITZMAURICE C,ALLEN C,BARBER RM,et al.Global,regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015:a systematic analysis for the global burden of disease study[J].JAMA Oncol,2017,3(4):524
[2] SIEGEL RL,MILLER KD,JEMAL A.Cancer statistics, 2017[J].CA Cancer J Clin,2017,67(1):7
[3] CHEN W,ZHENG R,BAADE PD,et al.Cancer statistics in China, 2015[J].CA Cancer J Clin,2016,66(2):115
[4] CHEN H,ZHANG J,XU Y,et al.Performance comparison of artificial neural network and logistic regression model for differentiating lung nodules on CT scans[J].Expert Syst Appl,2012,39(13):11503
[5] 张红升.人工神经网络技术在肺癌CT诊断中的应用[D].郑州:郑州大学,2007.
[6] FARADMAL J,SOLTANIAN AR,ROSHANAEI G,et al.Comparison of the performance of log-logistic regression and artificial neural networks for predicting breast cancer relapse[J].Asian Pac J Cancer Prev,2014,15(14):5883
[7] FLOYD CE JR,LO JY,YUN AJ,et al.Prediction of breast cancer malignancy using an artificial neural network[J].Cancer,2015,74(11):2944
[8] KANNUSWAMI P,POOBAL S,RAMYA MM.Artificial neural network based lung cancer detection for PET/CT images[J].Indian J Sci Technol,2018,10(42):1
[9] BURKE HB,GOODMAN PH,ROSEN DB,et al.Artificial neural networks improve the accuracy of cancer survival prediction[J].Cancer,2015,79(4):857
[10]马寒芳,杨艳,陈如燕.健康体检人群肺癌危险因素的调查与分析[J].中西医结合护理(中英文),2017,3(4):9
[11]谭善娟.基于生物标志的数据挖掘技术在肺癌预警预报系统中的应用[D].郑州:郑州大学,2012.
[12]张莉琳,房冬冬,黄爽.上皮-间质转化及其相关分子标志物在肺癌中的研究进展[J].中国医药导报,2016,13(20):41
[13]黄晓珠,包勇.痰分子标志物在肺癌早期诊断中的研究进展[J].中华肺部疾病杂志:电子版,2015,8(1):99
[14]贾锐,李晓平.非小细胞肺癌分子标志物的临床意义及研究进展[J].医学综述,2017,23(6):1135
[15]SCHMITZ-DRAEGER BJ,DROLLER M,LOKESHWAR VB,et al.Molecular markers for bladder cancer screening, early diagnosis, and surveillance: the WHO/ICUD Consensus[J].Urol Int,2015,94(1):1
[16]MA L,XIE XW,WANG HY,et al.Clinical evaluation of tumor markers for diagnosis in patients with non-small cell lung cancer in China[J].Asian Pac J Cancer Prev,2015,16(12):4891
[17]CHENG JZ,NI D,CHOU YH,et al.Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans[J].Sci Rep,2016,6:24454
[18]TING DS,YI PH,HUI F.Clinical applicability of deep learning system in detecting tuberculosis with chest radiography[J].Radiology,2018,286(2):729

相似文献/References:

[1]王玉珍,吴逸明,李伟辉,等.热休克蛋白70hom基因+2 437(T/C)位点基因多态性与肺癌的关系*[J].郑州大学学报(医学版),2010,(02):219.
 WANG Yuzhen,WU Yiming,LI Weihui,et al.Heat shock protein 70hom gene+2 437(T/C) polymorphism and susceptibility to lung cancer in Chinese Han population[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2010,(06):219.
[2]刘艳华),王玲),王彦平),等.膳食因素与肺癌关系的病例对照研究[J].郑州大学学报(医学版),2009,(06):1260.
 LIU Yanhua),WANG Ling),WANG Yanping),et al.A casecontrol study on relationship between dietary intake and relative factors and lung cancer[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2009,(06):1260.
[3]马会军),李耀军),牛松涛),等.非小细胞肺癌40例介入治疗体会[J].郑州大学学报(医学版),2009,(05):1106.
[4]张菊娥)△,郭茂峰),张贵星),等.肺癌患者全血自由基代谢及其酶类测定*[J].郑州大学学报(医学版),2009,(04):766.
 ZHANG Jue),GUO Maofeng),ZHANG Guixing),et al.Detection of free radical metabolism and its protective enzymes of lung carcinoma patients[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2009,(06):766.
[5]刘天舟,张琳,王庆芳,等.血清CEA、NSE、SCCAg和CYFRA211联合检测对肺癌诊断的价值[J].郑州大学学报(医学版),2010,(05):809.
 LIU Tianzhou),ZHANG Lin),WANG Qingfang),et al.Diagnostic value of combined determination of serum CEA,NSE,SCCAg and CYFRA211 for lung cancer[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2010,(06):809.
[6]齐宇)△,李鑫),杨鲲鹏),等.支气管肺泡灌洗液中CYFRA211、NSE和CEA联合检测对肺癌的诊断价值[J].郑州大学学报(医学版),2010,(04):618.
 [J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2010,(06):618.
[7]杜晓光,吕栋,谢新立,等.原发性肺癌合并骨转移242例骨痛分析[J].郑州大学学报(医学版),2010,(04):670.
 [J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2010,(06):670.
[8]郑红伟),俞鹏辉),陈勇),等. 中晚期肺癌20例螺旋CT三期动态增强扫描观察[J].郑州大学学报(医学版),2011,(02):276.
 [J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2011,(06):276.
[9]任振泰),崔静),李甸源)#,等. 多西紫杉醇对A549细胞的放射增敏作用[J].郑州大学学报(医学版),2011,(02):315.
 [J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2011,(06):315.
[10]马群,赵秀升,吕瑞,等. 艾迪注射液联合化疗治疗晚期非小细胞肺癌20例[J].郑州大学学报(医学版),2011,(02):320.
 [J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2011,(06):320.

备注/Memo

备注/Memo:
【基金项目】国家自然科学基金面上项目(81573203)
【作者简介】吴拥军,通信作者,男,1968年1月生,博士,教授,研究方向:肺癌早期诊断,E-mail:wuyongjun@zzu.edu.cn
更新日期/Last Update: 2018-11-20