[1]高卫红,吕莉莉,徐小媚,等.基于混合模型的视网膜血管自动分割算法[J].郑州大学学报(医学版),2018,(06):780-785.[doi:10.13705/j.issn.1671-6825.2018.05.001]
 GAO Weihong,LYU Lili,XU Xiaomei,et al.Retinal vessel automatic segmentation algorithm based on hybrid model[J].JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES),2018,(06):780-785.[doi:10.13705/j.issn.1671-6825.2018.05.001]
点击复制

基于混合模型的视网膜血管自动分割算法()
分享到:

《郑州大学学报(医学版)》[ISSN:1671-6825/CN:41-1340/R]

卷:
期数:
2018年06期
页码:
780-785
栏目:
应用研究
出版日期:
2018-11-20

文章信息/Info

Title:
Retinal vessel automatic segmentation algorithm based on hybrid model
作者:
高卫红吕莉莉徐小媚方纯洁
浙江中医药大学医学技术学院 杭州 310053
Author(s):
GAO Weihong LYU Lili XU Xiaomei FANG Chunjie
College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053
关键词:
视网膜血管分割 眼底图像 混合模型 区域生长
Keywords:
retinal vessel segmentation fundus image hybrid model region growing
分类号:
TP751.1
DOI:
10.13705/j.issn.1671-6825.2018.05.001
摘要:
目的:构建基于混合模型的视网膜血管自动分割算法。方法和结果:混合模型算法流程包括4个步骤。首先,提取眼底图像的绿色分量图像以减少噪声影响(预处理); 然后分别应用形态学模型和尺度空间模型对预处理后的眼底图像进行分割; 将两种模型的分割结果进行融合; 最后,利用区域生长法对融合结果进行迭代生长,得到视网膜血管的精分割结果。从眼底图像库DRIVE训练数据集与测试数据集中分别抽取20幅彩色眼底视网膜图像进行自动分割,分割的准确度、敏感度和特异度分别为0.943 1、0.657 7、0.987 1。结论:混合模型算法克服了单一分割模型的局限性,能够获得较好的视网膜血管网络图像。
Abstract:
Aim:To establish a retinal vessel automatic segmentation algorithm based on hybrid model.Methods and Results:Hybrid model algorithm included 4 steps.Firstly, the green component image of the fundus image was extracted to reduce the noises influence(pretreatment); secondly,the morphological model and scale space model were respectively established to segment the preprocessed fundus images, and then the segmentation results of the two models were fused.Finally,the region growing method was applied to grow the fusion results iteratively, and the accurate segmentation results of the retinal vessels were obtained.A total of 40 color fundus retina images extracted from training data set(n=20)and test data set(n=20)of DRIVE library,were segmented using hybrid model,and the accuracy,sensitivity and specificity were 0.943 1, 0.657 7 and 0.987 1,respectively.Conclusion:Hybrid model algorithm can overcome the limitations of single segmentation model, and obtain a better retinal vascular network.

参考文献/References:

[1] 姚畅,陈后金.病变视网膜图像血管网络的自动分割[J].电子学报,2010,38(5):1226
[2] SOARES JV,LEANDRO JJ,CESAR JúNIOR RM,et al.Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification[J].IEEE Trans Med Imaging,2006,25(9):1214
[3] CHAUDHURI S,CHATTERJEE S,KATZ N,et al.Detection of blood vessels in retinal images using two-dimensional matched filters[J].IEEE Trans Med Imaging,1989,8(3):263
[4] HOOVER A,KOUZNETSOVA V,GOLDBAUM M.Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J].IEEE Trans Med Imaging,2000,19(3):203
[5] JIANG XY,MOJON D.Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images[J].IEEE Trans Pattern Anal Mach Intell,2003,25(1):131
[6] NIEMEIJER M,STAAL J,VAN GINNEKEN B,et al.Comparative study of retinal vessel segmentation methods on a new publicly available database[J].Proc SPIE,2004,5370:648
[7] LAM BS,GAO YS,LIEW AW.General retinal vessel segmentation using regularization-based multiconcavity modeling[J].IEEE Trans Med Imaging,2010,29(7):1369
[8] 戴培山,王博亮,鞠颖.视网膜血管图像分割及眼底血管三维重建[J].自动化学报,2009,35(9):1168
[9] 王晓红,赵于前,廖苗,等.基于多尺度2D Gabor小波的视网膜血管自动分割[J].自动化学报,2015,41(5):970
[10]YAO C,CHEN HJ,YU JB,et al.Application of distributed genetic algorithm based on migration strategy in image segmentation[C]//Proceedings of Third International Conference on Natural Computation.Washington:IEEE Computer Society Press,2007:218
[11]NEKOVEI R,SUN Y.Back-propagation network and its configuration for blood vessel detection in angiograms[J].IEEE Trans Neural Netw,1995,6(1):64
[12]FRAZ MM,REMAGNINO P,HOPPE A,et al.Ensemable classification system applied for retinal vessel segmentation on child images containing various vessel profile[J].Springer Berlin Heidelbery,2012,7325(10):380
[13]OSAREH A,SHADGAR B.Automatic blood vessel segmentation in color images of retina[J].Iranian J Sci Technol Trans B Eng,2009,33(2):191
[14]LUPASCU CA,TEGOLO D,TRUCCO E.FABC:retinal vessel segmentation using AdaBoost[J].IEEE Trans Technol Biomed,2010,14(5):1267
[15]MIRI MS,MAHLOOJIFAR A.Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction[J].IEEE Trans Biomed Eng,2011,58(5):1183
[16]ZANA F,KLEIN JC.Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation[J].IEEE Trans Image Process,2001,10(7):1010

备注/Memo

备注/Memo:
【基金项目】浙江省自然科学基金资助项目(LY16F10008,LQ16F020003); 浙江省教育厅科研项目(Y201431354); 浙江省重中之重一级学科科研开放基金资助项目(Yao2016018)
【作者简介】方纯洁,通信作者,男,1981年7月生,硕士,实验师,研究方向:医学图像处理,E-mail:dmia_lab@zcmu.edu.cn
更新日期/Last Update: 2018-11-20